

Submitted To: World Health Organization

Topic: Ethical Implications of Human Gene Editing

Submitted By: Hellenic Republic (Greece)

Human gene editing is one of the most transformative scientific advancements of the 21st century. It gives scientists the ability to change an organism's DNA. Certain technologies specific to this craft offer potential to treat genetic disorders, prevent inherited diseases, and improve public health. However, with great power comes great responsibly. These innovations raise reasonable ethical questions regarding human dignity, the affordability of the practice, and the limits of scientific intervention. As a member of the European Union and a nation rooted in democratic values, Greece advocates for a cautious and ethically grounded approach to human gene editing.

Greece is actively involved in genomic research and healthcare innovation, having 99 genetics labs and 27 rare disease centers. We're a part of major EU projects that help spread the availability of this treatment. As part of the EU we adhere to the ethical and legal frameworks established by the European Union and the Council of Europe. The Oviedo Convention on Human Rights and Biomedicine, to which Greece is a signatory, prohibits germline genetic modification for reproductive purposes. Greece supports somatic gene editing, which affects only the individual and not future generations. This is only when used for therapeutic purposes under strict ethical oversight. This means we're okay with using gene editing to help those who are ill, but we don't support changing DNA in embryos. We don't support germline editing because we believe editing genes in a way that affects future generations is risky, unpredictable, and ethically wrong, especially when safer options like PGD with IVF (preimplantation genetic diagnosis with in vitro fertilization) already exist.

CRISPR-Cas9 is an approach to genome editing that allows scientists to cut and modify DNA with incredible precision. It was adapted from a natural defense system found in bacteria and is faster, cheaper, and more effective than other genome editing methods. It is a powerful

and types of cancer. This tool is worth putting our trust in, with caution of course. It is perfect for somatic gene editing and treating diseases. Greece encourages international cooperation to create global rules for how CRISPR should be used.

Ethically, Greece is guided by values like human dignity, informed consent, and social justice. These values should be implemented in gene editing and all healthcare. Germline editing raises serious concerns about consent with the fact that embryos and future generations cannot agree to being edited. It also risks social inequality if only well-off families can afford genetic changes. And it's a slippery slope if you start with gene therapy that could lead to enhancements like intelligence or appearance, which we strongly oppose. We believe gene editing should be used to heal, not play God and redesign humanity.

Greece also believes that decisions about gene editing shouldn't just be made by scientists alone. Public engagement is absolutely essential. Countries like France have shown how national bioethics debates can help in shaping a country's policy in a way that reflects shared values, not just private views. This ensures that more are content with the going-ons of the health world. We also of course support international cooperation through the United Nations, the World Health Organization, and UNESCO to create global guidelines that protect human rights and guarantee ethical governance. We support education and transparency so people may understand what exactly gene editing is and its impact on society.

Greece is looking forward to the future of medicine, but we believe ethics must come first. We support somatic gene editing to help people who are sick, but oppose germline editing until it's proven safe, fair, and globally accepted. Our goal is to protect human dignity, prevent harm, and make sure science serves everyone.

Works Cited

- American Society of Gene + Cell Therapy. "Ethical Issues: Germline Gene Editing | ASGCT American Society of Gene & Cell Therapy |." Patienteducation.asgct.org, 16 Dec.
 2020.
- Blasimme, Alessandro. "Why Include the Public in Genome Editing Governance Deliberation?" AMA Journal of Ethics, vol. 21, no. 12, 1 Dec. 2019, pp. 1065–1070.
- Council of Europe. "Oviedo Convention and Its Protocols Human Rights and Biomedicine Www.coe.int." Human Rights and Biomedicine, 2025.
- Fridovich-Keil, Judith. "Gene Editing." Encyclopedia Britannica, 21 Dec. 2018.
- Mary Simopoulou. "Greece Healthcare Genomic and Genetic Technologies." International Trade Administration | Trade.gov, 10 Feb. 2025.
- MedlinePlus. "What Are Genome Editing and CRISPR-Cas9?" Medlineplus, National Library of Medicine, 22 Mar. 2022.
- Melchior, Florian, et al. "The Genetic Technologies Questionnaire in the Greek-Speaking

 Population: The Moral Judgement of the Lay Public." Frontiers in Genetics, vol.

 16, 13 May 2025.
- National Human Genome Research Institute. "What Are the Ethical Concerns of Genome
 Editing?" National Human Genome Research Institute, National Institutes of
 Health, 3 Aug. 2017.
- Shanks, Pete. "European Convention Continues to Ban Germline Editing." Center for Genetics and Society, 17 Oct. 2022.

Islamic Republic of Pakistan

World Health Organization

Ethical Implications of Human Gene Editing

12 November 2025

The issue of genetic engineering is both cutting edge and pervasive. Genetic Engineering has a wide range of applications, encompassing both GMO crops and bioengineered weapons, which are often discussed under the same topic. Recent breakthroughs, such as CRISPR-Cas9, have opened the door to much more precise and safe methods to edit genes and cure single gene disorders. While these technologies are not yet ready for widespread cosmetic use in humans, as many will likely want to meddle with the human genome in un-natural ways. There are many dangers exposed by genetic engineering, both ethical and physical. It is reasonable to conclude that with the current pace of genetic engineering, major alterations to the genome of unborn people are likely to become possible. On the more physical side, genetic engineering could both give or cure people of debilitating illnesses like sickle cell anemia, which is passed down to future generations.

In past attempts to resolve these issues, the World Health Organization (WHO) has created a committee dedicated to the ethics of human gene editing that has an up-to-date guideline as to the morals of human gene editing. In addition to a committee dedicated to human gene editing, WHO has established a global registry on human genome editing, which contains publicly available data from clinical trials using human genome editing technology. The UN has also prohibited the development of bio-weapons as a whole through the Biological Weapons Convention. The Islamic Republic of Pakistan believes that genetic engineering is both a miracle and a temptation to leave Allāh's grace. For this reason, Pakistan has decided that all genetic

engineering outside of GMO crops should be heavily regulated, and all forms of unnecessary genetic engineering, such as cosmetic alterations, are to be discouraged immediately, as it alters Allāh's creation and as such, they would leave his light. The WHO should provide a much clearer and stricter outline that provides a framework for member nations. Pakistan's initiatives were developed in accordance with the ideas outlined in Resolution 203 from the Council of the International Islamic Fiqh Academy of the Organization of Islamic Cooperation. Above all, Pakistan's goal is to keep genetic diversity within humanity and to avoid a dystopian future of uniformity, where both Allāh's wishes and that of our ancestors are abandoned. Towards that end, Pakistan would also appreciate further safe measures to prevent the unethical use as outlined above of gene editing in countries without the capabilities to regulate and control tools like CRISPR-Cas9 in the future.

One way to accomplish safe human gene editing would be to limit access to tools such as CRISPR-Cas9 to those with consent from their government, under the guidelines of both the WHO and that nation's legislature. Furthermore, to safeguard against unknown problems, it would be wise to push all potential genetic engineering drugs through much more extensive testing before being allowed for public use, as this technology is still too new for widespread implementation. The risks that are put on the initial recipients of these technologies are unknown as of now, especially any long-term risks, which is why all therapeutic genetic engineering drugs should be tested for long-term effects on the same level as current vaccines are subject to until proven to be safe long-term.

Works Cited

- National Library of Medicine. "What Are Genome Editing and CRISPR-Cas9?" National Library of Medicine, 22 Mar. 2022,

 medlineplus.gov/genetics/understanding/genomicresearch/genomeediting/. Accessed 21

 Oct. 2025.
- Resolution No. 203. Edited by The Council of the International Islamic Fiqh Academy of the Organization of Islamic Cooperation. International Islamic Fiqh Academy, 22 Nov. 2013, iifa-aifi.org/en/33075.html. Accessed 21 Oct. 2025.
- World Health Organization. "Human Genome Editing." World Health Organization,
 www.who.int/health-topics/human-genome-editing#tab=tab_3. Accessed 21 Oct. 2025.

A 3

Ethical Implications of Human Gene Editing

Sid Girada

Guyana

WHO

In recent years, gene editing science has progressed at the hands of technologies such as CRISPR-Cas9, with it has come profound ethical questions regarding how much humanity will involve itself in editing its own genetic code. As alluring as human gene editing is to the possibility of curing genetic illness and improving quality of life; it presents serious moral, social, and legal questions.

Around the world, nations are grappling with how to balance scientific progress with ethical impacts and human rights.

Human gene editing can be divided into two categories: somatic and germline. Somatic editing affects only the treated individual and is often used for research or medical treatment for such diseases as sickle cell anemia. Germline editing, by contrast, entails the editing of reproductive cells, which means that such alterations would be inheritable by subsequent generations. This distinction is critical because germline editing raises additional issues of consent, long-term safety, and the potential for abuse in "designer babies."

Guyana stands for careful genetic editing in medical circumstances but disagrees with aesthetic uses. "Designer babies" would limit human variation. When genetic diversity is limited, we see limits in immunity and disease resistance. Scientists have ethical obligations to those they are treating, however, due to differences in beliefs, the United Nations must pass a motion to unify guidelines. Overall, Guyana does not generally agree with genetic editing, however, if it is entirely necessary then we believe a motion must limit.

At the global level, there is no United Nations treaty on human gene editing yet. However, several international treaties touch on the topic. The Universal Declaration of Human Rights (UDHR)

has in Article 1 that "All human beings are born free and equal in dignity and rights," which suggests that any technology that can lead to genetic inequality violates this principle. Similarly, Article 3 of UNESCO's Universal Declaration on the Human Genome and Human Rights (1997) states that "The human genome underlies the fundamental unity of all members of the human family," and that the genome "in its natural state shall not give rise to financial gains." Together, these statements create a moral imperative that puts human dignity and equality above technological exploitation.

To date, no resolution of the UN General Assembly or Human Rights Council has addressed human gene editing specifically. Yet various bodies and scholars have called for international norms to render research and applications safe, fair, and responsive to human rights. The World Health Organization (WHO) has also convened expert groups to review the issue and suggest global governance arrangements.

At the regional level, Guyana is a member of the Caribbean Community (CARICOM), which has overarching values of good governance, public health, and human welfare. While research on gene editing is still limited in the Caribbean, the ethical aspects are of critical interest. The majority of developing nations, including Guyana, are worried that fast-tracked development in biotechnology may widen gaps between poor and rich countries. Richer countries might employ gene editing to augment physical or mental abilities, whereas poorer nations may not have access to even fundamental genetic treatments. This inequality would contravene the principle of equality enshrined in international human rights law.

Guyana is of the view that scientific advancement should always be tempered by ethics, transparency, and sensitivity to human dignity. The government recognizes the possible benefits of gene editing in preventing genetic diseases and promoting healthcare, especially where medical facilities are

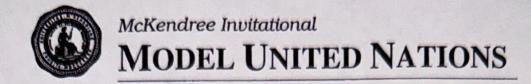
poor. However, Guyana vehemently opposes any use of gene editing for enhancement or non-medical purposes until there is global consensus. Furthermore, the country emphasizes that genetic modification can never be used to justify discrimination, eugenics, or the creation of social hierarchies based on genetic traits.

In Guyana's view, the ideal next step for the United Nations would be the adoption of a resolution for the establishment of a universal ethical framework for human gene editing. The resolution should all on all member states to pass national legislation on gene editing in line with human rights norms; prohibit germline editing until safety and ethical concerns are resolved; promote global access to beneficial gene therapies to prevent widening inequality; and make public education and debate on the social and ethical implications of gene editing possible. although Guyana has no biotechnology labs as yet, it believes it is vital to be involved in the global debate on gene ethics. In calling for a human-centered, cautious approach, Guyana wants to ensure that science serves humanity, and not the other way around.

Time and time again, the world has declared the inherent value of all human life. Now that we are living in a time when science is able to edit the code of life itself, the UN has to ensure that these advances add to, not subtract from, human dignity. The ethical stakes in human gene editing demand thoughtful global cooperation, guided by reflections on fairness, justice, and respect for the shared future of humanity.

References

- UNESCO. (1997). Universal Declaration on the Human Genome and Human Rights. Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000110220
- United Nations. (1948). *Universal Declaration of Human Rights*. Retrieved from https://www.un.org/en/about-us/universal-declaration-of-human-rights
- World Health Organization. (2021). *Human Genome Editing: Recommendations*. Retrieved from https://www.who.int/publications/i/item/9789240030381
- BBC News. (2018). Gene editing: Ethical debate intensifies after CRISPR baby claim. Retrieved from https://www.bbc.com/news/health-46342195



Subject: The Ethical Implications of Human Gene Editing Sponsored By: Slovenia Submitted To: World Health Organization

1	As time passes, more progress is made on things like Artificial Intelligence, Cloning, and
2	Human Gene Editing. These technologies are becoming increasingly more alarming as
3	more people realize the potential negative effects of them. Some of the progress on these
4	things is positive, for example, human gene editing potentially being able to cure genetic
	diseases and gaining more information on curing currently incurable diseases. Human gene
5	editing could enable us to pick and choose what genes offspring would receive. Therefore,
6	people would be able to avoid genetically passed-down chronic diseases, like Crohn's.
7	However, this also means that people could pick and choose what other phenotypical traits
8	their offspring would receive, i.e., their child being genetically edited to be 6 '2 instead of 5
9	8. According to the National Human Genome Research Institute, many scientists recognize
10	this ability to edit genes to be a 'slippery slope,' often leading to its use for enhancement
11	purposes. Furthermore, this human gene editing has the possibility of being strictly for the
12	wealthy. This causes great alarm, worrying that it will increase the ever-lengthening gap
3	between the impoverished and the top one percent. Many refer to this aspect of the wealthy
	as "designer babies." Lastly, a huge ethical concern refers to the human experience. To be
4	human is to be flawed. If someone is genetically perfect, their experience as a human is
5	dramatically different than that of another. Greatly affects the impact of human
6	understanding, to live through life, figuring yourself out, and learning your flaws.
7	Now, in order to regulate this ever-growing ethical concern, there are many different
8	solutions available. One solution the Nation of Slovenia has adopted, along with the
9	European Union, is explicitly banning it and its academic progress. This academic progress
20	restriction or ban is to limit and regulate research. For example, limiting research just to
21	patients and not offspring. Furthermore, regulating and giving oversight of how this
22	scientific development is used. This could be done in a multitude of ways, limiting it to just
23	harmful genetic diseases and creating oversight committees to look over any ethical
.5	breaches. Lastly, education could be an extremely effective way to let people know of the

harmful ethical impacts of Human Gene Editing. The Nation of Slovenia recognizes how beneficial the research on this topic could be, but also recognizes the ethical impact this could have on human development.

Subject: Ethical Implications of Human Gene Editing
Sponsored By: The United Kingdom of Great Britain and Northern Ireland
Submitted To: World Health Organization

Genome Editing is defined by the World Health Organization as "a method for making specific changes to the DNA of a cell or organism". This mostly new technology has already started to make huge changes throughout the world. Scientists have begun to address diseases that were once considered "incurable" such as sickle-cell disease, HIV and other common blood diseases. The most common of these incredible gene editing technologies is called CRISPR-Cas9. In 2018, it was discovered that this could be used in embryos to protect against HIV. According to MIT, over 250 people worldwide have been treated with CRISPR and other similar methods which shows hope for its future advancements. However, many people are against human gene editing due to unethicality, risk, and future issues. People believe that using CRISPR or other forms of gene editing is unsafe due to how new the technology is. Others also believe that editing genes in embryos will lead to future "designer babies" or possible birth defects due to mistakes in procedures.

13

The United Kingdom of Great Britain and Northern Ireland invites U.N. member nations to register any human gene editing research or advancements to the World Health Organization Human Genome Editing (HGE) Registry in order to keep human gene editing ethical. This will also help prevent nations from using this technology, that can be used to do lots of good, from becoming something it should not. Gene editing should not be used for making any major changes to a human, but be used on a small scale; for example, to help cure and prevent diseases. This nation also stresses the importance of listening and reporting to the Expert Advisory Committee on Developing Global Standards for Governance and Oversight of Human Genome Editing (also known as the committee). Their focus is to build on existing experiments and create standards in the field which would help keep the growing science alive and safe. These small adjustments to the field will substantially increase the potential for keeping human gene editing ethical for years to come.

Submitted To: World Health Organization
Topic: Ethical Implications of Human Gene Editing
Submitted By: Russian Federation

A great issue that has come into the world as medical technology has advanced is the potential

2 application of human gene editing. Making changes to the human genome could allow for greater

3 preservation of human life by curing genetically transferred diseases such as Huntington's,

4 hemophilia, or down syndrome. These diseases are often crippling to the lives of those who have

5 them, promoting a clear objective to reach if nations were to develop technology to edit human

6 genes. Being able to change genes would also allow for various birth defects to become near

non-existent, allowing for less medical complications in the lives of those with edited genes.

8 This alone would be a clear motivator to develop the technology as quickly as possible

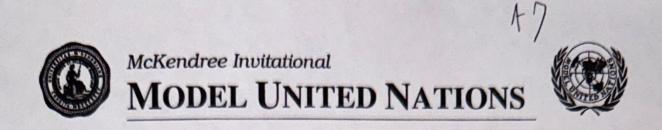
9 without looking back, but a few moral questions arise from this. The first of these comes from the

10 ability to create a baby that looks exactly how you want it to, with a predetermined appearance.

11 This leads to a lack of individuality and the possibility of eugenics, which would selectively

12 remove traits that society deems "undesirable". If modifications are allowed to be made without a

13 pressing enough reason, then the way someone grows could be made to fit trends from an era they


14 will never live through. However, placing regulations against this behavior could lead to countries

15 across the world benefiting from this new technology.

The Russian Federation urges other countries to pursue goals towards the improvement of gene editing technology for the sake of medical health. The Russian Federation believes that medical technology should be the only thing that gene editing technology is allowed to be used for, and that anyone who tries to harness the tech for petty reasons such as appearance should be barred from completing such surgeries. The overall gain from being able to cure the previously unfixable diseases passed down by genes is a great enough gain that people around the world

22 will be able to support this took as long as love are made to prevent frivolous year

22 will be able to support this tech, as long as laws are made to prevent frivolous uses.

Subject: Ethical Implications of Human Gene Editing Sponsored By: Republic of Korea Submitted To: World Health Organization

Admittedly, an alarming implication of human gene editing is the possible power to 2 "play god," which could be used for harm rather than good, impacting our world negatively. In 2005, UNESCO's Universal Declaration on Bioethics and Human Rights addressed these ethical concerns. The World Health Organization does not currently condone the clinical use of heritable germline editing, which alters reproductive cells that can be passed on to future generations. More guidelines need to be put in place before heritable gene editing is applied to human beings.

However, WHO does differentiate between heritable and non-heritable gene editing. Non-heritable gene editing, also called somatic gene editing, is recognized as an ethical application. A person's somatic cells do not include their reproductive ones. This technology can still be enhanced to help prevent or treat birth defects in an individual, therefore benefitting the 6% of the world's population born with genetic disorders--if used in the correct, ethical fashion. The benefit of being able to change millions of lives outweighs the negative, for non-heritable gene editing could save people and governments millions in health care costs if precautions are taken to prevent the misuse of this technology. Burdens carried by parents, caregivers, and others that are responsible to assist such families are undeniable. As of April 2024, 1 out of 17 people have a genetic disorder that has the chance to be fixed or improved through genetic therapy or gene editing.

If there lies a path that would help lift these burdens for future generations, the world should consider taking it, although with rational caution and regards to ensuring human dignity. It is possible that such disorders could be detected before the child is born, allowing for more parents to have children safely without the worry about the potential risks on their child's life. Humans would thrive with everyone being able to provide instead of having to be provided for. These implications prove that more global discussion, research, and study of all forms of gene editing should be allowed. With more research, the need to plan for ethical human implementation would become imperative.

The World Health Organization and the UN should encourage government-funded genetic editing, including the allocation of proper resources to conduct the research. Thus, any privately owned company should not be allowed to conduct research unless it is already related to approved treatments on those who truly need it. Furthermore, all research conducted by a government should be for the benefit of all countries, not just itself. Otherwise, such competition could lead to a genetic race to outdo another country, meaning all findings should be put into a public pool for the benefit of all nations in the UN. Member States should thrive off each other and work together to rid the world eventually of the burden of genetic disorders, albeit in a controlled manner guided by science and ethics.

1

5

7

9

10 11

12

13 14

15

16 17

19

20

23

25

26

27

28

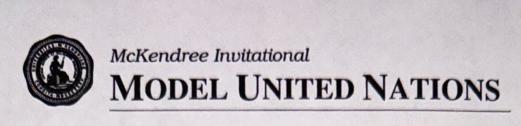
30

31

32

37

Subject: Ethical Implications of Human Gene Editing
Sponsored By: Denmark
Submitted To: World Health Organization


Human gene editing is a rising concern globally. Human gene editing is an experimental rare procedure that 250 people worldwide have received gene editing based therapy as of early 2024. Following that in early 2025 there were over 240 ongoing clinical trials involving gene editing (CRISPR). Over 200 people had received experimental CRISPR based therapies. As of mid 2025 96 countries found that 75 prohibited the gene editing practice. The long term effects this practice has could lead to changes that are passed down through generations with a large potential for unforeseen harm. Safety concerns are off target effects and mosaicism, where some cells are edited and some are not. These long term effects on a developing human and future generations cannot be fully predicted which makes this much more of a risky procedure. This procedure threatens human dignity by deliberately altering human genes to enhance certain traits. This segregates our society creating a two tiered society based on genetic enhancements, potentially leading to new forms of discrimination. There is a significant concern that gene editing therapies will only be accessible to wealthier classes, creating a divide between the upper and lower classes, as well as genetic enhancements versus those without enhancements. Gene editing research involving human embryos raised ethical objections regarding moral statistics of the embryo and the human eggs which carries risks for donors. While embryo genetic editing isn't supported, public support is significantly higher for using gene editing to kill disease proteins. Gene editing can fix the root cause for diseases by fixing, replacing or turning off faulty genes that cause sickle cell anemia, cystic fibrosis, and muscular dystrophy. Correcting a gene mutation in an embryo could prevent a disease from ever developing which is a much more efficient method than others for inherited diseases. Gene therapy can offer a one time treatment with long lasting effects eliminating the need for a lifetime of medication. This can help prevent inherited disorders from being passed down to the future generations. Gene editing can also be used to train a patient's immune system to help attack any cancerous cells.

Denmark urges the nations to support the use of disease models. Using disease models can help researchers better understand the progressions and origins of various diseases. Denmark also urges the nations to prohibit the use of gene editing to change an embryo's physical features. Denmark hopes that the nations will support the use of gene editing for only diseases and cancerous cells. Denmark commends nations who have prohibited the use of gene editing for physical trait changes and for only the use for various diseases. Denmark expresses hope for the nations to all work together to find a more safe way of testing and for researchers to practice for various diseases on models before coming for human cells. Denmark is hopeful that the nations will agree to support the use of gene editing for diseases to create a society where there are lower rates of genetic diseases such as sickle cell anemia, cystic fibrosis, and muscular dystrophy. Denmark believes that with these changes made with more research done before working on human cells that the society will become more healthy and live on longer without diseases carrying to other generations to come.

Submitted To: World Health Organization Topic: Antimicrobial Resistance Submitted By: Romania

- 1 Antimicrobial resistance is a significant threat to global health and society. It kills about 1.27
- 2 million humans every year and is expected to kill 39 million by the year 2050. Romania
- 3 recognizes Antibiotic Resistance as a global threat although it is exacerbated by poverty. It is
- 4 caused by overuse, high consumption rates, and poor sanitation. Romania is fully alarmed by the
- 5 placement of 2nd highest antibiotic consumption in 2023 in Europe. Concerning global risks,
- 6 48% of countries did not report Antimicrobial Resistance statistics to the WHO in 2023. The
- 7 Global Antibiotic Resistance Surveillance System (GLASS) most recently reported that countries
- 8 with limited AMR monitoring tend to report higher resistance levels. Romania concerningly notes
- 9 that Antimicrobial resistant pathogens applies extreme risk to modern medicine. Due to the fact
- 10 that AMR makes basic infection difficult to treat, it also increases the risk of basic medical
- 11 procedures such as chemotherapy, caesarean section, joint replacements, organ transplants, and
- 12 more.
- 13 Romania supports organizations such as the RNH for the reason that they aim to protect against
- 14 health emergencies. It further reminds all countries to report deaths and statistics pertaining
- 15 antimicrobial resistance and to follow their WHO cooperation stradegies. Romania emphasizes
- 16 prioritizing money towards research, and aiding countries in need of healthcare assistance to
- 17 decrease human suffering caused by AMR, as well as decrease the issue. The importance of
- 18 education to general public will help decrease the misuse of antibiotics and can be achieved
- 19 through campaigning in public spaces, digital advertising, and additions to public school health
- 20 programs. Moreover, limits should be placed on the usage of antibiotics to preven unnecessary prescriptions. Romania expresses its appreciation to member states that work together to prevent the increase of antimicrobial resistance

Subject: Antimicrobial Resistance in Global Health Sponsored By: The Federal Republic of Somalia Submitted To: World Health Organization

Antimicrobial Resistance (AMR) is one of the most pressing global health threats of the 21st century. It occurs when bacteria, viruses, fungi, and parasites evolve to resist the effects of medications, rendering common treatments ineffective. The World Health Organization estimates that AMR could cause up to 10 million deaths annually by 2050 if not addressed. In many low-income nations, including Somalia, weak health systems, unregulated drug markets, and limited diagnostic capabilities have accelerated this crisis. AMR directly threatens progress in maternal and child health, tuberculosis control, and infectious disease management- areas that are already under strain in Somalia. Without urgent global action, the misuse and overuse of antibiotics will continue to undermine public health and development worldwide.

The Federal Republic of Somalia recognizes the growing threat of AMR and its impact on national health security. In 2020, Somalia's Ministry of Health, in collaboration with the WHO and the Food and Agriculture Organization (FAO), launched a National Action Plan on Antimicrobial Resistance aligned with the WHO Global Action Plan. This plan emphasizes raising awareness, strengthening surveillance, and improving infection prevention and control measures. Somalia has also worked with international partners to improve access to essential medicines and expand disease surveillance in major hospitals. However, challenges continue due to limited laboratory capacity, the prevalence of informal drug markets, and the lack of

and partner nations is crucial to achieving meaningful progress.

The delegation of Somalia believes that addressing AMR requires global solidarity, sustainable funding, and equitable access to healthcare resources. Somalia supports WHO's One Health approach, recognizing that AMR is not only a medical issue but also an agricultural and environmental one. To strengthen the global response, Somalia proposes the following measures:

national antibiotic regulation systems. Continued technical and financial support from WHO

1. Enhance Capacity Building

Expand training programs for healthcare professionals and pharmacists on proper antibiotic use and infection prevention.

2. Improve Laboratory Infrastructure

Request WHO and donor nations to fund the development of regional laboratories to enhance disease surveillance and data collection.

3. Strengthen Regulation of Pharmaceuticals

Establish clear national laws to regulate the import, sale, and prescription of antibiotics, modeled after WHO's Global AMR Surveillance System (GLASS).

4. Promote Public Awareness

Partner with NGOs, schools, and local media to educate communities on the dangers of antibiotic misuse and the importance of completing full treatment courses.

42 43

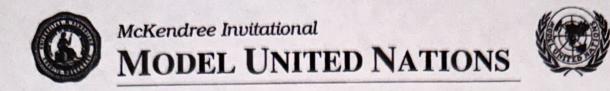
40

41

The delegation of Somalia emphasizes that combating antimicrobial resistance requires collective global action grounded in collaboration, education, and long-term investment. By uniting nations under WHO's guidance, the world can safeguard future generations from the devastating impact of drug-resistant infections.

Subject: Antimicrobial Resistance (AMR) in Global Health Sponsored By: The Republic of Panamá Submitted To: The World Health Organization

One of the greatest and most pressing health concerns in modern society is antimicrobial resistance (AMR). A microbe is any microorganism, such as viruses, bacteria, and parasites, that can cause infection or harm to its respective host. In 1928, when the first antimicrobial agent, penicillin, was introduced, manufacturing of this antibacterial skyrocketed; humanity has since dedicated vast amounts of research and resources to combat microbes in a multitude of different ways. Medicines such as antibiotics, antivirals, and antiparasitics are used by thousands of people per day. These drugs are so commonly used that microbes like viruses and bacteria are becoming immune to their medicinal counterparts. When a microbe evolves to become immune to its cure, it becomes a "super bug", more officially known as an antimicrobial resistant disease (AMR). It is important to note that AMRs will typically only form from improper use of a prescribed antimicrobial, such as not fulfilling the complete 11 course of medicine. One of the most difficult antimicrobial-resistant diseases that the world faces today is Tuberculosis (TB). Certain strains have become immune to the four most effective treatment methods, making treatment long, costly, and in some cases, impossible for underdeveloped nations. And by improperly treating TB, the bacteria that cause it can 15 develop new resistance and only become a more imminent threat.


When attempting to combat the threat of Antimicrobial Resistance, the two factors that need 17 to be addressed are preventative measures as well as proactive efforts. To prevent other infectious diseases from becoming AMR, much more awareness and alarm needs to be brought to this issue. The Task Force of AMR Survivors is a subcommittee of the WHO 20 whose goal is "to give a platform for and elevate the voices of those with experience of complications from drug-resistant infections". By providing increased funding and support to 22 this task force, the UN will see a clear change in policy and advocacy towards this pressing 23 issue. Once people become more aware of the situation, they will have a better time in 24 preventing AMR. Secondly, and more difficult, comes the issue of tackling already existent, 25 dangerous AMRs like Tuberculosis. As mentioned above, TB treatment is long and costly; logically, the best way to solve that problem is to lower the cost of treatment; however, this is 27 not something that can be achieved by a single resolution, tariff, or committee. Instead, the views and ideas of the public need to reflect this goal favorably. Again, calling on the Task 29 Force of AMR survivors would be an effective option. Whether simple pamphlets are issues, 30 or elaborate public engagement campaigns are constructed, any light shed by this task force 31 will prove essential to the AMR opposition. 32

33

21

34 35 36

37 38

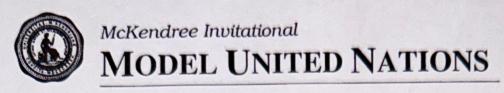
Subject: Mitigating Exposure to High Levels of Carcinogenic Agents

Sponsored By: Sierra Leone
Submitted To: WHO

Cancer has had a devastating and universal affect on all peoples. It is not something that discriminates against ethnic groups, gender, class, or nationality. World Health Organizations (WHO) reported, "between 30–50% of all cancer cases are preventable." Sierra Leone acknowledges this universal issue and urges all nations to act now.

In 2020, the Republic of Sierra Leone Ministry of Health and Sanitation presented a set of goals and objectives to prevent cancers and other non-communicable diseases (NCDs). This paper outlined Sierra Leone's objectives for combating carcinogenic agents. The first was ownership and accountability, for leading governments to reflect on the effects of NCDs and cancers then implement solutions. The second goal is to set up integrated people-centered health services. Integrated health services are managed to ensure the continual health care involving rehabilitation, palliative care, and disease prevention/treatment; people-centered health services approach care while acknowledging the patients individually perspective. The third is to produce universal health care (UHC). UHC is defined to be, ensuring that all people have access to needed health services. The fourth goal is to reduce inequalities, guaranteeing healthy outcomes for all. Additional goals include community participation and partnership with non-governmental organizations/ private partners, mobilizing sustainable funding, promoting healthy lifestyle, strengthening NCD prevention, and lastly, to establish systems for monitoring and evaluation.

There are 5 major risk factors for NCDs and cancers unhealthy diet, tobacco use, harmful use of alcohol, physical inactivity and air pollution. These factors lead to cardiovascular diseases, chronic respiratory diseases, diabetes, and especially cancer. By promoting healthy diets, which would be, consuming organic vegetables and fruits along with proteins and carbohydrates and together with adequate physical activity, it will strengthen the body and make it better able to combat also less likely to


contract illnesses. Excessive use of alcohol and tobacco is factually proven to increase cancer rates. Educate your nation's citizens to the dangers of tobacco and alcohol.

Furthermore, the objective of Sierra Leone is, "to promote the healthy development and wellbeing and the accelerated reduction of preventable NCD deaths among Sierra Leoneans." (MOH, p. 37) By administering these strategic plans and increasing resources to prevent, diagnose, and treat cancers it contributes to a global effort to address a shared challenge.

Sources:

https://portal.mohs.gov.sl/download/33/publications/1602/sierra-leone-ncd-strategic-plan-2020-2024-feb2 020.pdf

https://www.who.int/activities/preventing-cancer

Subject: Equitable Access to Cancer Treatment
Sponsored By: China
Submitted To: World Health Organization

The global cancer burden presents a critical challenge: dramatically rising cases and the pervasive lack of equitable care, projected to increase by 77% by 2050 ¹, which urgently demands immediate action. This issue stems from a Prevention Gap² (environmental carcinogens) and a severe Treatment Gap³ (shortages of affordable diagnostics and essential medicines in Low- and Middle-Income Countries - LMICs), leading to preventable deaths and catastrophic financial burden; for this reason, China maintains that all effective solutions must respect national sovereignty and favor flexible, non-binding cooperation over strict regulations. In line with this perspective, China firmly aligns with the developing world (G77 Bloc ⁴ /South-South Cooperation), favoring non-interference, technology transfer, and affordable solutions, directly countering the financial barriers created by Developed Blocs' prioritization of Intellectual Property Rights (IPR). Consequently, the G77 Bloc demands support for generic drug production to bypass high drug costs, which China strongly supports as it upholds national sovereignty and non-binding cooperation. These objectives are reinforced by the existing UN framework, where the WHO and IARC programs for substance classification and risk monitoring remain central to the issue, which is also key to the UN Sustainable

World Health Organization (WHO), 2024. Global Cancer Statistics: Projections and Burden. Available at: https://www.who.int

² International Agency for Research on Cancer (IARC). Global Cancer Prevention Strategies and Research Priorities. Available at: https://www.google.com/search?q=https://www.jarc.who.int/prevention-guide

³ WHO. Essential Medicines List and Global Health Equity. Available at:

https://www.google.com/search?q=https://www.who.int/medicines/treatment-gap-report

⁴ United Nations. The Group of 77 at the United Nations: Mandate and Structure. Available at: https://www.g77.org/about/charter

Development Goals (SDGs), particularly Goal 35 (Good Health and Well-being), China intends to build on these by sharing technology and strengthening capacity, in accordance with the UN Charter and WHO principles that stress collaboration to achieve the highest attainable standard of health as a fundamental right. Furthermore, China's strategy notes the UN Secretary-General's calls for global solidarity and the WHO's demand for stronger primary healthcare systems. To achieve these goals, China's main objectives are to utilize the Belt and Road Initiative (BRI) for logistics and distribute affordable, WHO-approved generic and biosimilar cancer drugs. Our strategy is to frame the resolution around "South-South Cooperation" and "Respect for National Priorities," focusing on two concrete, non-binding proposals: the Global Technology Exchange Platform (GTEP) for sharing low-cost monitoring technology, and the South-South Cooperation Fund for Carcinogen Monitoring (SSCF-CM), initially funded by China, promising affordable infrastructure and medicines through the BRI to build a unified bloc of LMICs. China's approach is superior due to its focus on Practicality and Speed (large-scale generics manufacturing saves lives faster than patent negotiations), promoting Political Viability, and Leveraging Existing Infrastructure through the Belt and Road Initiative (BRI)⁶ to move time-sensitive medical supplies. Finally, while the strongest opposing position argues that generic drugs discourage future research by undermining IP Rights, China rebuts this, asserting that access to essential treatment is a global human right, justifying current patient access over commercial interests. The second opposing argument, claiming voluntary cooperation is too weak, is countered by noting that binding rules ignore the varied economic capacity of LMICs; thus our voluntary GTEP and SSCF-CM offer practical. adaptable solutions for sustainable change.

United Nations. SDG Goal 3: Ensure healthy lives and promote well-being for all at all ages. Available at:, https://sdgs.un.org/goals/goal3

⁶ Ministry of Foreign Affairs of the PRC. Vision and Actions on Jointly Building the Silk Road Economic Belt and 21st-Century Maritime Silk Road. Available at: https://www.google.com/search?q=https://www.fmprc.gov.cn/bri-official-statement